Crystal Structure and Reversible O₂-Binding of a Room Temperature Stable μ - η^2 : η^2 -Peroxodicopper(II) Complex of a Sterically Hindered Hexapyridine Dinucleating Ligand

Masahito Kodera,*.[†] Kou Katayama,[†] Yoshimitsu Tachi,[†] Koji Kano,[†] Shun Hirota,[‡] Shuhei Fujinami,[§] and Masatatu Suzuki[§]

Department of Molecular Science and Technology Doshisha University, Kyotanabe, Kyoto 610-0321, Japan Department of Chemistry, Graduate School of Science Nagoya University, Chikusa-ku, Nagoya 464-01, Japan Department of Chemistry, Kanazawa University Kakuma-machi, Kanazawa 920-1192, Japan Received July 5, 1999

Oxyhemocyanin $(oxyHc)^1$ and $oxytyrosinase (oxyTy)^2$ have a similar μ - η^2 : η^2 -peroxodicopper(II) (Cu₂O₂) structure² in the active sites but show different functions, reversible O₂-binding³ and O₂-activation,⁴ respectively (see Scheme 1). On the basis of the large

Scheme 1

difference of the Cu–Cu distances, 4.6 and 3.6 Å, for deoxyand oxyHc, respectively, it is supposed that O₂ is released from oxyHc when the Cu–Cu distance is elongated.² The reaction of the μ - η^2 : η^2 -Cu₂O₂ complex may be directed by various factors, such as the Cu–Cu distance, the Cu coordination geometry, and the electronic effect of the nitrogen donor ligand. However, despite excellent mechanistic studies on the reaction of the μ - η^2 : η^2 -Cu₂O₂ complex,⁵ what determines the direction, reversible O₂-binding or O₂-activation, has not been clearly shown.^{2.6} Thermally stable μ - η^2 : η^2 -Cu₂O₂ complexes [Cu(HB(3,5-Me₂pz)₃)]₂(O₂) (1)^{7a,b} and [Cu(HB(3,5-Pr₂pz)₃)]₂(O₂) (2)^{7c} were reported by Kitajima et al.

(2) (a) Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E. Chem. Rev. 1996, 96, 2563. (b) Holm, R. H.; Kennepohl, P.; Solomon, E. I. Chem. Rev. 1996, 96, 2239. (c) Solomon, E. I.; Tuczek, F.; Root, D. E.; Brown, C. A. Chem. Rev. 1994, 94, 827 (d) Solomon, E. I.; Baldwin, M. J.; Lowery, M. D. Chem. Rev. 1992, 92, 521. (e) Baldwin, M. J.; Root, D. E.; Pate, J. E.; Fujisawa, K.; Kitajima, N.; Solomon, E. I. J. Am. Chem. Soc. 1992, 114, 10421. (3) Cuff, M. E.; Miller, K. I.; van Holde, K. E.; Hendrichson, W. A. J.

Mol. Biol. **1998**, *278*, 855. (4) (a) Cooksey, C. J.; Garratt, P. J.; Land, E. J.; Pavel, S.; Ramsden, C.

A.; Riley, P. A.; Smit, N. P. M. J. Biol. Chem. **1997**, 272, 26226. (b) Clews, J.; Cooksey, C. J.; Garratt, P. J.; Land, E. J.; Ramsden, C. A.; Riley, P. A. Chem. Commun. **1998**, 77.

(6) (a) Kodera, M.; Tachi, Y.; Hirota, S.; Katayama, K.; Shimakoshi, H.; Kano, K.; Fujisawa, K.; Moro-oka, Y.; Naruta, Y.; Kitagawa, T. *Chem. Lett.* **1998**, 389. (b) Kodera, M.; Shimakoshi, H.; Tachi, Y.; Katayama, K.; Kano, K. *Chem. Lett.* **1998**, 441. as structural models of oxyHc and oxyTy but their O₂-binding is irreversible. Therefore, to clarify the relationship between the structure of the μ - η^{2} : η^{2} -Cu₂O₂ complex and the reversibility in the O₂-binding a thermally stable μ - η^{2} : η^{2} -Cu₂O₂ complex which realizes the reversible O₂-binding is necessary.⁸

First, we prepared a sterically hindered tripyridylmethane ligand, tris(6-methyl-2-pyridyl)methane (tripy).⁹ Its μ - η^2 : η^2 -Cu₂O₂ complex [Cu(tripy)]₂O₂•(PF₆)₂ (**3**) is prepared by O₂ addition to a Cu(I) complex of tripy, but not stable at room temperature. Then, tripy is converted to 1,2-bis[2-(bis(6-methyl-2-pyridyl)methyl)-6-pyridyl]ethane (L), which has two sterically hindered tripyridylmethane units connected by an ethylene spacer (see Scheme 2). L forms the μ - η^2 : η^2 -Cu₂O₂ complex [Cu₂O₂(L)](PF₆)₂ (**4**).¹⁰

Scheme 2

^a t-BuLi in dry THF/1,2-dibromoethane.

The half-life time of **4** in CH₂Cl₂ at 25 °C is 25.5 h. To our knowledge, **4** is the most stable in all μ - η^2 : η^2 -Cu₂O₂ complexes reported so far. Although many dinucleating ligands¹¹ have been synthesized with the expectation that those having six donor sets similar to imidazole groups in the active site of Hc would stabilize the μ - η^2 : η^2 -Cu₂O₂ structure, such a high stability as **4** has never been attained. **4** is the first example of the room-temperature stable μ - η^2 : η^2 -Cu₂O₂ complex with a dinucleating ligand. Here, we describe the synthesis, crystal structure, and reversible O₂-binding of **4**.

4 was prepared either by reaction of di- μ -hydroxodicopper(II) complex [Cu₂(OH)₂(L)](PF₆)₂ (**5**) with H₂O₂ or by O₂ addition to dicopper(I) complex [Cu₂(MeCN)₂(L)] (PF₆)₂ (**6**), isolated as a purple solid by concentration of the reaction mixture at -20 °C, and purified by recrystallization from CH₂Cl₂/PhCH₃ at -50 °C. Physicochemical properties¹⁰ of **4** are similar to those of oxyHc.¹ Slow recrystallization gave crystals of **4**·3CH₂Cl₂ suitable for X-ray crystal structure analysis.¹² As shown in Figure 1, **4** has a discrete dicopper(II) unit bridged by a peroxide in the μ - η ²: η ²-mode. L stabilizes **4** by encapsulating the μ - η ²: η ²-Cu₂O₂ core

^{*} To whom correspondence should be addressed.

Doshisha University.

[‡] Nagoya University.

[§] Kanazawa University.

^{(1) (}a) Magnus, K. A.; Hazes, B.; Ton-That, H.; Bonaventura, C.; Bonaventura, J.; Hol, W. G. J. *Proteins: Struct., Funct., Genet.* **1994**, *19*, 302. (b) Magnus, K. A.; Ton-That, H.; Carpenter, J. E. *Chem. Rev.* **1994**, *94*, 727.

^{(5) (}a) Karlin, K. D.; Nasir, M. S.; Cohen, B. I.; Cruse, R. W.; Kaderli, S.;
Zuberbühler, A. D. J. Am. Chem. Soc. 1994, 116, 1324. (b) Becker, M.;
Schindler, S.; Karlin, K. D.; Kaden, T. A.; Kaderli, S.; Palanche, T.;
Zuberbühler, A. D. Inorg. Chem. 1999, 38, 1989. (c) Pidcock, E.; Obias, H.
V.; Zhang, C. X.; Karlin, K. D.; Solomon, E. I. J. Am. Chem. Soc. 1998, 120, 7841. (d) Itoh, S.; Kondo, T.; Komatsu, M.; Ohshiro, Y.; Li, C.; Kanehisa, N.; Kai, Y.; Fukuzumi, S. J. Am. Chem. Soc. 1995, 116, 4717. (e) Itoh, S.;
Nakao, H.; Berreau, L. M.; Kondo, T.; Komatsu, M.; Fukuzumi, S. J. Am. Chem. Soc. 1998, 120, 2890. (f) Kitajima, N.; Koda, T.; Iwata, Y.; Morooka, Y. J. Am. Chem. Soc. 1990, 112, 8833. (g) Kitajima, N.; Morooka, Y. Chem. Rev. 1994, 94, 737.

^{(7) (}a) Kitajima, N.; Fujisawa, K.; Moro-oka, Y.; Toriumi, K. J. Am. Chem. Soc. **1989**, 111, 8975. (b) Kitajima, N.; Koda, T.; Hashimoto, S.; Kitagawa, T.; Moro-oka, Y. J. Am. Chem. Soc. **1991**, 113, 5664. (c) Kitajima, N.; Fujisawa, K.; Fujimoto, C.; Moro-oka, Y.; Hashimoto, S.; Kitagawa, T.; Toriumi, K.; Tatsumi, K.; Nakamura, A. J. Am. Chem. Soc. **1992**, 114, 1277.

^{(8) (}a) Tyeklár, Z.; Jacobson, R. R.; Wei, N.; Murthy, N. N.; Zubieta, M. J.; Karlin, K. D. J. Am. Chem. Soc. 1993, 115, 2677. (b) Karlin, K. D.; Kaderli, S.; Zuberbühler, A. D. Acc. Chem. Res. 1997, 30, 139. (c) Karlin, K. D.; Lee, D.-H.; Kaderli, S.; Zuberbühler, A. D. Chem. Commun., 1997, 475. (d) Bol, J. E.; Driessen, W. L.; Ho, R. Y. N.; Maase, B.; Que, L., Jr.; Reedijk, J. Angew. Chem., Int. Ed. Engl. 1997, 36, 998. (e) Bözel, H.; Comba, P.; Katsichtis, C.; Kiefer, W.; Lienke, A.; Nagel, V.; Pritzkow, H. Chem. Eur. J. 1999, 5, 1716.

⁽⁹⁾ Kodera, M.; Tachi, Y.; Kita, T.; Kobushi, H.; Kano, K.; Shiro, M.; Koikawa, M.; Tokii, T.; Ohba, M.; Okawa, H. *Inorg. Chem.* Submitted for publication.

⁽¹⁰⁾ A satisfactory elemental analysis was obtained for **4** dried under vacuum. Anal. Calcd for $C_{38}H_{36}N_{60}O_2P_2F_{12}Cu_2$: C, 44.53; H, 3.54; N, 8.20; Cu, 12.29. Found: C, 44.45; H, 3.52; N, 8.24; Cu, 12.14. UV–vis (CH₂Cl₂, 25 °C): 360 (ϵ 24700), 532 nm (1530). Resonance Raman (Me₂CO, 25 °C): (¹⁶O–¹⁶O) 760 cm⁻¹, (¹⁸O–¹⁸O) 719 cm⁻¹. ESI MS (CH₂Cl₂, 25 °C): *m/z* 881 {[Cu₂O₂(L)](PF₆)]⁺, ¹H NMR [(CD₃)₂CO, -30 °C, δ , ppm (TMS)]: 3.18 (s, 12H, Me), 4.30 (bs, 4H, CH₂), 6.77 (s, 2H, CH), 7.64 (d, 4H, 5-py), 7.81 (d, 2H, 5-pr'), 7.97 (d, 4H, 3-py), 8.12 – 8.15 (d, 2H, 3-py', t, 4H, 4-py), 8.27 (t, 2H, 4-py'). ESR: silent in CH₂Cl₂ at 77 K. (11) (a) Sorrell, T. N. *Tetrahedron* **1989**, 45, 3. (b) Mani, F. Coord. Chem.

^{(11) (}a) Sorrell, T. N. Tetrahedron **1989**, 45, 3. (b) Mani, F. Coord. Chem. Rev. **1992**, 120, 325. (c) Karlin, K. D.; Zuberühler, A. D. In Bioinorganic Catalysis, 2nd ed.; Reedijk, J., Bouwman, E., Eds.; Marcel Dekker: New York, 1999; p 469. (d) Kodera, M.; Terasako, N.; Kita, T.; Tachi, Y.; Kano, K.; Yamazaki, M.; Koikawa, M.; Tokii, T. Inorg. Chem. **1997**, 36, 3861.

Figure 1. ORTEP view (40% probability) of the crystal structure of 4.3CH₂Cl₂. Unlabeled atoms (open circles) represent carbon atoms. Selected interatomic distances (Å) and angles (deg) are as follows: Cu(1)-O(1), 1.924(6); Cu(1)-O(2), 1.907(6); Cu(1)-N(1), 2.136(7); Cu(1)-N(2), 1.977(7); Cu(1)-N(3), 2.043(7); Cu(2)-O(1), 1.913(6); Cu(2)-O(2), 1.888(6); Cu(2)-N(4), 2.265(7); Cu(2)-N(5), 1.970(7); Cu(2)-N(6), 1.992(7); Cu···Cu, 3.477(7); O(1)-O(2), 1.485(8); Cu(1)-O(1)-Cu(2), 130.0(3); Cu(1)-O(2)-Cu(2), 132.8(3); the dihedral angle between the Cu(1), O(1), O(2) and Cu(2), O(1), O(2) planes is 162.92.

with the four 6-methyl groups and the ethylene spacer, which may also enhance the stability of 4 entropically by connecting two Cu(tripy) moieties as a kind of chelate effect. The Cu-Cu distance 3.477 Å of 4 is slightly shorter than 3.560 Å⁷ of 2. On the other hand, the O–O bond length 1.485 Å of 4 is slightly longer than 1.412 Å⁷ of **2**. Overall structural features (O₂-bridging mode, bond lengths about the Cu₂O₂ core, and anti-configuration of the two axial Cu-N bonds) of 4 are similar to those of oxyHc and $2.^7$ Different from 2, however, 4 has no symmetric center. Furthermore, the bond angles about the Cu atoms in 4 are much more distorted than those in 2; the $Cu-O_2-Cu$ of 4 is slightly bent and the τ values, $^{\rm 13}$ 0.29 and 0.11, of ${\bf 4}$ are much larger than the 0.02 value of 2. These indicate that the square pyramidal geometry around the Cu atoms in 4 is much more distorted than that in 2.

As shown in Figure 2, the reversible O₂-binding of 4 was observed, where 4 releases O_2 in MeCN-CH₂Cl₂ (0.001:3, v/v) at 80 °C in vacuo and is regenerated by refilling with O2 at room temperature. After three cycles of the reversible O₂-binding, the irreversible decomposition is less than 30% of 4 used. It was reported that upon reaction with CO or $P(Ph)_3$ 1 releases O_2 to form [Cu₂(CO)(HB(3,5-Me₂pz)₃)]⁺ or [Cu₂(P(Ph)₃)(HB(3,5-Me₂- $[pz]_{3}$]^{+,7} which are too stable to react with O₂, and **1** is not regenerated. In the present O2-binding experiments, MeCN contained in the solvent system is substituted for O2 when O2 is released from 4 to form 6. With a similar experiment with 1 and 3, however, the reversible O_2 -binding was not observed. Since the neutral hexapyridine ligand L better stabilizes the Cu_2^{I} state than the anionic hydrotrispyrazolyl borate ligand {HB(3,5dialkylpz)₃ $^-$, the reversible O₂-binding between **4** and **6** may be

Figure 2. Reversible O₂-binding with 4 in MeCN-CH₂Cl₂ (0.001:3, v/v) at room temperature. Spectrum 3 was obtained with the solution of 4 in MeCN-CH₂Cl₂ (0.001:3, v/v). Spectrum 2 was obtained after degassing the solution by freeze and thaw, and heating the solution at 80 °C. Spectrum 3' was obtained after O₂ addition to the resultant solution. Spectra 2', 3", and 2" were obtained after the second and third cycles of the repetition of this reversible O₂-binding experiment.

partly owing to the easy accessibility of the CuI₂ state from the Cu^{II}₂O₂ state.

It is supposed that distortion introduced to the Cu-O₂ bond in oxyHc by elongation of the Cu–Cu distance decreases O₂-affinity of oxyHc so that oxyHc easily releases O_2 to attain reversible O₂-binding.² On the other hand, the reversible O₂-binding in the present system may be attained owing to the large distortion of the Cu₂O₂ core in 4. Karlin and Solomon et al. showed that the distortion of butterfly type μ - η^2 : η^2 -Cu₂O₂ complexes,¹⁴ which attain the reversible O₂-binding at low temperature, plays an important role in their reactivity.¹⁵ Therefore, we suggest that distortion of the Cu₂O₂ core in the μ - η^2 : η^2 -Cu₂O₂ complex may be important for controlling aspects of the reversible O₂-binding of the μ - η^2 : η^2 -Cu₂O₂ complex and the Cu-Cu distance, 3.477 Å, of 4 may be long enough to bind O_2 reversibly because of the distortion of the Cu₂O₂ core.

Acknowledgment. We thank Prof. Teizo Kitagawa, Institute for Molecular Science, for permission to use the resonance Raman equipment.

Supporting Information Available: Tables S1-S4, crystallographic experimental details, final atomic coordinates, thermal parameters, and full bond distances and angles for 3, and synthesis and spectroscopic data of ligand L and complexes 1 and 2 (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA9922950

⁽¹²⁾ **4**·3CH₂Cl₂ (C₄₁H₄₂N₆O₂P₂F₁₂Cu₂Cl₆, MW 1280.56) crystallized in the triclinic space group *P*1 with *a* = 14.003(3) Å, *b* = 15.695(3) Å, *c* = 12.600-(4) Å, $\alpha = 98.56(2)^{\circ}$, $\beta = 96.49(2)^{\circ}$, $\gamma = 69.32(2)^{\circ}$, V = 2556(1) Å³, Z = 2, R(Rw) = 0.080(0.114), GOF = 1.62. (13) Addison, A. W.; Rao, T. N.; Reedijk, J.; Rijin, J. V.; Verschoor, G.

C. J. Chem. Soc., Dalton Trans. 1984, 1349.

 ⁽¹⁴⁾ Karlin, K. D.; Tyeklár, Z.; Farooq, A.; Haka, M. S.; Ghosh, P.; Cruse,
 R. W.; Gultneh, Y.; Hayes, J. C.; Toscano, P. J. *Inorg. Chem.* **1992**, *31*, 1436.
 (15) Pidcock, E.; Obias, H. V.; Abe, M.; Liang, H.-C.; Karlin, K. D.; Solomon, E. I. J. Am. Chem. Soc. 1999, 121, 1299.